CLXXIV.—The Influence of Groups and Associated Rings on the Stability of Certain Heterocyclic Systems. Part III. The Substituted Paraconic Acids.

By SARBBANI SAHAY GUHA SIRCAR.

THE stability of five- and six-membered heterocyclic systems containing nitrogen having been examined (this vol., pp. 600 1252), a study has been made of five-membered rings containing oxygen. For this purpose the substituted paraconic acids were suitable. Three disubstituted acids had already been prepared by Birch, Gough, and Kon (J., 1921, **119**, 1320), and two others (methylethyl and *cyclopentane* compounds) were obtained from the corresponding ketones by their method. The monosubstituted paraconic acids were prepared by Fittig's well-known method.

As paraconic acid and its monoalkyl derivatives can be neutralised at the ordinary temperature without fission of the lactone ring, which is only attacked by hot alkali (Fittig, *Ber.*, 1890, 23, 91), it was possible in the present investigation to use two equivalents of alkali, one to neutralise the acid and the other to effect the opening of the ring; the first process, being instantaneous, had no undesirable effect on the hydrolysis. At 25° the velocity of hydrolysis was conveniently rapid in the solution prepared by adding 10 c.c. of N/10-sodium hydroxide to 90 c.c. of an N/180-solution of a paraconic acid.

The results of the hydrolyses given in Table I again show strikingly the influence of substituents on the stability of a heterocyclic system. The introduction of a methyl group causes, as was also observed in the two previous investigations, an increase in the stability. The influence of two ethyl groups is, however, greater than that of the *cyclo*pentane or *cyclo*hexane group.

TABLE I.

Substituents.	$k \times 10^5$.	Substituents.	$k \times 10^5$.
н, н	1630	Me, Et	164
Me, H	763	Et, Et	74.5
\mathbf{Et}, \mathbf{H}	652	cycloPentane	119
Me, Me	2 70	cycloHexane	107

EXPERIMENTAL.

Paraconic acid was prepared by decomposing itabromopyrotartaric acid by water (Annalen, 1882, **216**, 77; in the preparation of itabromopyrotartaric acid by the addition of hydrobromic acid to itaconic acid it was found convenient to heat the mixture at 100° for 3 hours) and purified by means of the silver salt. The acid was very hygroscopic; m. p. 57° (Found : C, 45.8; H, 5.0. Calc. : C, 46.15; H, 4.6%). Methylparaconic acid (Fittig, *Ber.*, 1890, **23**, 91) was slightly hygroscopic; m. p. 84.5° (Found : C, 49.8; H, 5.8. Calc. : C, 50.0; H, 5.55%). Ethylparaconic acid (Fittig, *loc. cit.*) had m. p. 85° (Found : C, 53.0; H, 6.6. Calc. : C, 53.2; H, 6.3%). Dimethylparaconic acid (terebic acid) (Birch, Gough, and Kon, *loc. cit.*) crystallised from water in scales, m. p. 174° (Found : C, 53.4; H, 6.4. Calc. : C, 53.1; H, 6.4%). Diethylparaconic acid (Birch and Thorpe, J., 1922, **121**, 1825) had m. p. 105° (Found : C, 57.85; H, 7.4. Calc. : C, 58.05; H, 7.5%). *cyclo*Hexanespiroparaconic acid (Birch, Gough, and Kon, *loc. cit.*) had m. p. 184—185° (Found : C, 60.3; H, 7.4. Calc. : C, 60.6; H, 7.1%).

Methylethylparaconic Acid.—This acid was prepared by a method similar to that employed in preparing the dimethyl compound (above). Details are not given, as they differed only in minor points from those recorded by Birch, Gough, and Kon. The *imide*, CMeEt $<_{C(CN)\cdot CO}^{C(CN)\cdot CO}>NH$, was crystallised from alcohol;

m. p. 225—227° (Found : N, 20·4. $C_{10}H_9O_2N_3$ requires N, 20·7%). 2 : 3-Dicyano-1-methyl-1-ethylcyclopropane-2-carboxylamide crystallised from benzene in needles, m. p. 127—128° (Found : N, 23·4. $C_9H_{11}ON_3$ requires N, 23·7%). The γ -lactone of β -hydroxy- β -ethylbutane- γ 88-tricarboxylic acid crystallised from water on the addition of hydrochloric acid, m. p. 157—158° (efferv.) (Found : C, 49·7; H, 5·6. $C_9H_{12}O_6$ requires C, 50·0; H, 5·55%). Methylethylparaconic acid crystallised from hot water in needles, m. p. 131—132° (Found : C, 55·45; H, 6·7. $C_8H_{12}O_4$ requires C, 55·8; H, 7·0%. Found for the silver salt : Ag, 38·4. $C_8H_{11}O_4Ag$ requires Ag, 38·7%).

cycloPentanespiroparaconic Acid.—The preparation was similar to that of the cyclohexane analogue (above). The bridged imide was crystallised from alcohol; m. p. 202—203° (Found: N, 20·3. $C_{11}H_9O_2N_3$ requires N, 20·9%). cycloPentanespiro-2:3-dicyano-cyclopropane-2-carboxylamide was crystallised from dilute alcohol; m. p. 126° (Found: N, 21·8. $C_{10}H_{11}ON_3$ requires N, 22·2%). The γ -lactone of 1-hydroxycyclopentylethane- $\alpha\beta\beta$ -tricarboxylic acid slowly crystallised from a small quantity of water after the addition of hydrochloric acid; m. p. 175—177° (efferv.). cycloPentane-spiroparaconic acid was prepared by heating the tribasic acid at 200° for 2 hours until the evolution of carbon dioxide ceased; it crystallised from water in needles, m. p. 127° (Found: C, 58·3; H, 6·4. $C_9H_{12}O_4$ requires C, 58·7; H, 6·5%. Found for the silver salt: Ag, 37·4. $C_9H_{11}O_4$ Ag requires Ag, 37·1%).

Details of the hydrolyses are recorded in Table II. a = 5 in all cases. (For the meaning of the letters, see preceding paper.)

	Paraconic acid.		Methylparaconic acid.		Ethylparaconic acid.		Dimethylpara. conic acid.	
t.	a - x.	$k \times 10^5$.	a-x.	$k \times 10^5$.	a-x.	$k imes 10^5$.	a-x.	$k imes 10^5$.
0	3.1		4.7	_	$4 \cdot 2$		5.0	
5	$2 \cdot 8$	1430	3.7*	(878)	3.3	(857)	4.4	272
10	1.75	1850	2.8	788	2.75	743	$3 \cdot 9$	266
15	1.35	1800	$2 \cdot 3$	780	2.35	704	3.55	272
20	1.15	1670	$2 \cdot 0$	750	$2 \cdot 2$	606	$3 \cdot 2$	271
25	1.0	1600	1.8	761	1.9	629	$3 \cdot 0$	266
30	0.9	1510	1.55	772	1.65†		$2 \cdot 8$	252
35	0.8	1560	1.35	730	1.5‡	630	$2 \cdot 5$	$\boldsymbol{285}$
	Me	an 1630	$M\epsilon$	an 763	\mathbf{Me}	an 652	${ m Me}$	an 270
	Methylethyl- paraconic		Diethyl- paraconic				cycloHexane- spiroparaconic	
	acid.		acid.		acid.		acid.	
0	4.8	—	5.0		4.95	—	$5 \cdot 2$	—
5	4.6	174	4.9		4.6	(174)	4.95	
10	4.3	162	4.7	64	4.45	124	4.5	111
15	4.05	155	4.5	74	4 ·2	127	4.35	100
$20 \\ -20 \\$	3.8	163	4.35	75	4.0	125	4.1	102
25	3.55	171	4.2	76	3.9	113	3.9	112
30	3.3	163	4.05	78	3.7	117	3.75	111
35	3.12	168	3.95	76	3.6	111	$3 \cdot 6$	155
4 0	—		3.8	79	—	—	—	
	Mean 164		Mean 74·5		Mean 119		Mean 107	

TABLE II.

*, †, ‡ values for 4, 31, and 37 minutes, respectively.

The author wishes to express his grateful thanks to Professor J. F. Thorpe, C.B.E., F.R.S., for his kind interest in the work and to the Chemical Society for a grant that partly defrayed the cost.

 Imperial College of Science and Technology,

 London, S.W. 7.
 [Received, March 9th, 1927.]